Flowback and Produced Water ReUse

bill.berzins@k-nowbe.com

Produced Water Beneficial Uses

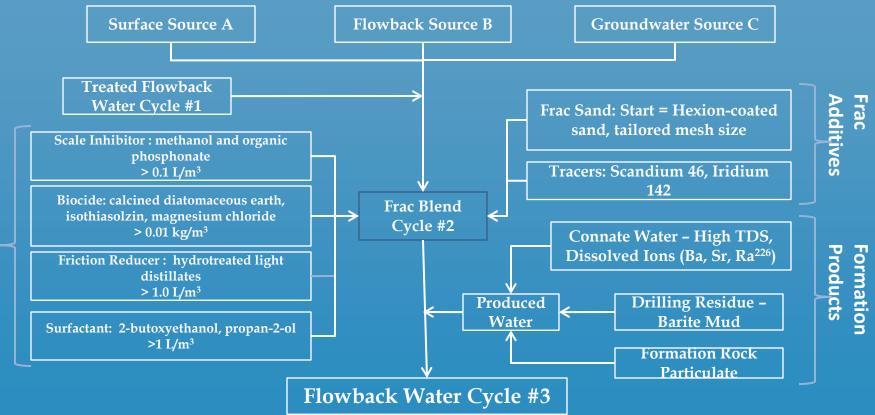
- Recycling Frac Fluid for Drilling: Encana (Suffield, Alberta)
- Potable Water Aquifer Storage and Retrieval: use of 500 1350 TDS CBM water (Gillette, Wyoming)
- Irrigation Water Production: Treatment of 6000 TDS produced water (Castaic Lake Water Agency, California)
- Irrigation Water Production: bio-treatment of produced water for crops (Nexen, Yemen)
- Livestock Watering: >1000 TDS CBM water (Gillette, Wyoming)
- Engineered Forest: Ecolotree® farms in Iowa (Licht, 2006)

F&PW ReUse Strategy

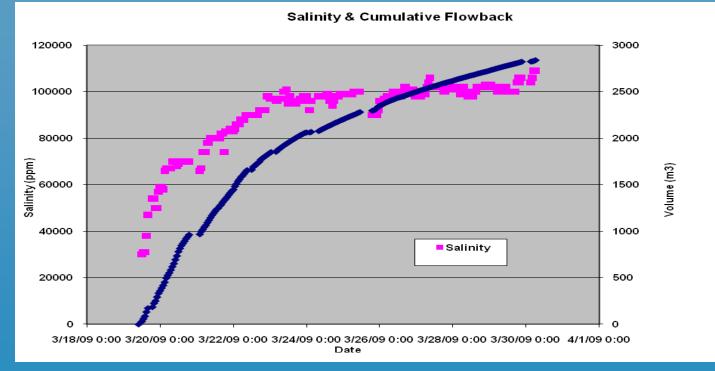
#1 Frack water specifications
#2 F&PW variability
#3 Life-cycle strategy
#4 Treatment technology
#5 Risk management

Typical Frack Water Specification

- Low sulfate (<500 mg/L)
- Moderate TDS (<100,000 mg/L)
- Neutral pH (6 8.5)
- Low turbidity
- Low bicarbonate (<400 mg/L)


Frac Water Additives

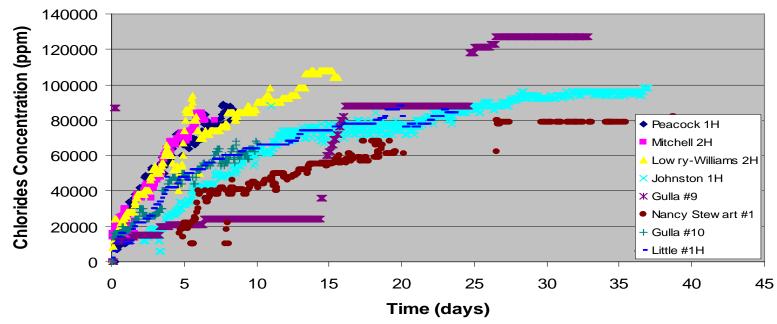
- Scale control
- Friction reducers
- Bacteria control
- Flow stimulation
- Oxygen scavenging
- Clay stabilization
- Surfactants
- Corrosion inhibition



Frack Supply and Flowback Composition

Frac Additives

Flow/Salinity Variation Montney



Salinity Variation - Marcellus

Marcellus v. Montney Scaling

		n (mg/L) n and Max	Strontium Median an		Ra ²²⁶ (Median a	
Marcellus	662	15,700	821	5,841	126	891
Montney	409	546	537	10,600	190	240

1 bequerel = 27 picocuries

Scale Formation

Compound	Formula	К _{sp}
Calcium hydroxide	Ca(OH) ₂	8 X 10 ⁻⁶
Strontium sulfate	SrSO ₄	3.44 x 10 ⁻⁷
Barium sulfate	BaSO ₄	1.08 x 10 ⁻¹⁰
Radium sulfate	RaSO₄	3.66 x 10 -11

Residuals Management

- Potential for issues from NORM:
 - Occupational Health and Safety low
 - Transportation of Dangerous Goods low to moderate
 - Leachability and Landfill Disposal moderate to high
- Key to management is early separation

Scaling Implications

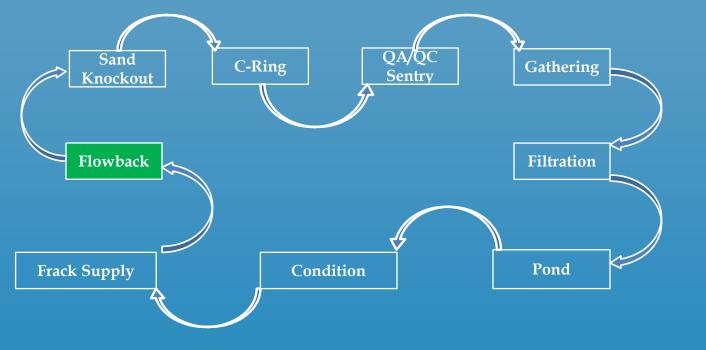
- Calcium carbonate scales
- Sulphate scales
 - Restricts flow
 - Affects formation characteristics
 - Residuals management
- Avoid high sulphate source water

Bacterial Implications

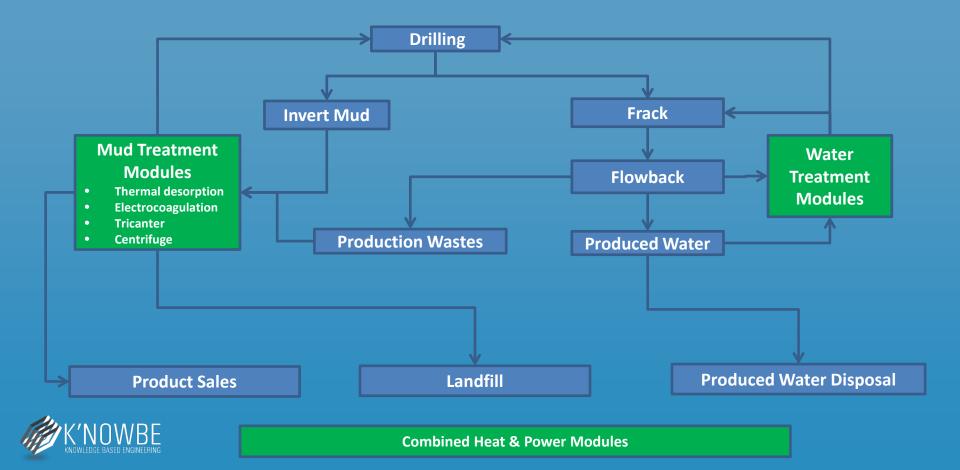
- Microbial Influenced Corrosion (MIC)
- Generation of hydrogen sulfide (H₂S)
- Creation of iron sulfides (Fe_x S_y black water)
 - Tank bottoms/interface solids
 - Plugging
 - Under-deposit corrosion
- Contamination of downstream equipment and pipelines

Strategic Implications

- Residual additives affect dosing estimates for subsequent re-use
- Scale inhibitor leachability of solid residuals
- Bacteria control aquatic and terrestrial toxicity
- Friction reducer effectiveness progressively lower with higher TDS


Opimizing F&PW Re-Use

- Fit-for-purpose, modular systems for online analysis, blending and conditioning of frac fluid
- Optimizing water management system
 - Minimize fresh-water requirements
 - Solids removal to protect reservoir
 - Precipitate removal to prevent fouling and scaling
 - Minimize additives
- Advanced treatment where deep well disposal is not available


Well-to-Well Cascading Strategy

Modular Strategy for Water and Waste Management

Flowback Treatment Technologies

- A Aqua-Pure NOMAD Mechanical Vapour Recompression
- B 212 Resources Hybrid Flash Evaporation and Distillation
- C Veolia Mechanical Vapour Recompression
- D GE Falling Film Mechanical Vapour Recompression
- *E* Lundberg Flood-force Crystallizer
- F Ecosphere Ozonix ozone and ultrasound sonoluminescence
- G VSEP Nanofiltration and High-Pressure Spiral RO
- H Veolia Clarification, Softening and ElectroDialysis Reversal
- I CoMag Magnetite Flocculation
- J Powell ElectroCoagulation, Ultrafiltration and Solids Concentrator
- K Toray High Pressure Membranes
- L ozonation-electrocoagulation
- M tomorrow

Advanced Treatment

- May be required due to:
 - Raw water scarcity
 - Blend specifications
 - Discharge restrictions
- Considerations:
 - Operating cost favors mechanical or chemical over thermal
 - Carbon footprint
 - Robustness due to variable feedstock

Keys to Technology Selection

- Modular to adapt to changes in flow and composition
- Cascading strategy
- Manage risk of upsets
- QA/QC Sentry at point of generation

Simplest Strategy – Water Conditioning

High-vol, high-p cartridges

Low-vol, low-p bags

Blending Pod – Water Re-Use

- Blending high-TDS with lowsulphate source water to meet friction reducer spec
- Conductivity-TDS correlation used to fine-tune

Key Considerations

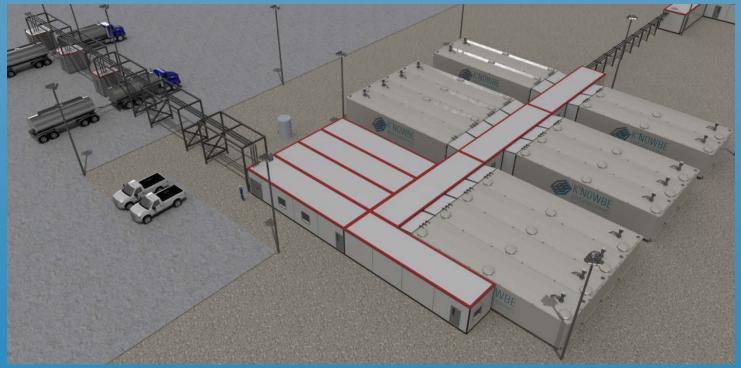
- Blending in-field characterization
- Maximize re-use achieve TDS target common maximum of 65,000 TDS
- Control of residuals throughout life cycle for disposal
- Optimizing water inventory to maximize reuse using on-line, in-field systems

Opimum Flowback Re-Use

- Proactive stakeholder strategy
- Maximize re-use of flowback with fit-for-purpose, modular systems for online analysis, blending and conditioning of frac fluid
- Optimizing water management system
 - Minimize fresh-water requirements
 - Solids removal to protect reservoir
 - Precipitate removal to prevent scaling
 - Minimize additives
- Advanced treatment where deep well disposal is not available

<u>Modular and Mobile – Technology Agnostic</u>

Flowback Recycle


Produced Water Disposal

Drilling Mud Recycle

Fully Modular Strategy

Summary

- Life-cycle strategy
- Cascading system
- Risk management

bill.berzins@k-nowbe.com

403.807.2782

